5-V Low-Drop Fixed Voltage Regulator

Features

- Output voltage tolerance ≤ ± 2 %
- Low-drop voltage
- Integrated overtemperature protection
- Reverse polarity protection
- Input voltage up to 42 V
- Overvoltage protection up to 65 V (≤ 400 ms)
- Short-circuit proof
- · Suitable for use in automotive electronics
- Wide temperature range
- Adjustable reset time
- ESD protection > 4000 V

Functional Description

This device is a 5-V low-drop fixed-voltage regulator. The maximum input voltage is 42 V (65 V, ≤400 ms). Up to an input voltage of 26 V and for an output current

ILE 4270S

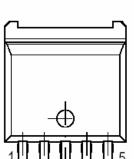
ILE 4270S

ILE 4270G – packege
P-TO263-5-1
ILE 4270S – packege
P-TO220-5-12
T_A = -40° ÷ 125° C for all packages.

up to 550 mA it regulates the output voltage within a 2 % accuracy. The short circuit protection limits the output current of more than 650 mA. The device incorporates overvoltage protection and temperature protection that disables the circuit at unpermissibly high temperatures.

Application Description

The IC regulates an input voltage in the range of 5.5 V $< V_{\rm I} < 36$ V to $V_{\rm Qnom}$ = 5.0 V. Up to 26 V it produces a regulated output current of more than 550 mA. Above 26 V the save-operating-area protection allows operation up to 36 V with a regulated output current of more than 300 mA. Overvoltage protection limits operation at 42 V. The overvoltage protection hysteresis restores operation if the input voltage has dropped below 36 V. A reset signal is generated for an output voltage of $V_{\rm Q} < 4.5$ V. The delay for power-on reset can be set externally with a capacitor.


Design Notes for External Components

An input capacitor $C_{\rm I}$ is necessary for compensation of line influences. The resonant circuit consisting of lead inductance and input capacitance can be damped by a resistor of approx. 1 Ω in series with $C_{\rm I}$. An output capacitor $C_{\rm Q}$ is necessary for the stability of the regulating circuit. Stability is guaranteed at values of $C_{\rm Q} \ge 22~\mu{\rm F}$ and an ESR of $< 3~\Omega$.

Pin Configuration

P-TO220-5-12

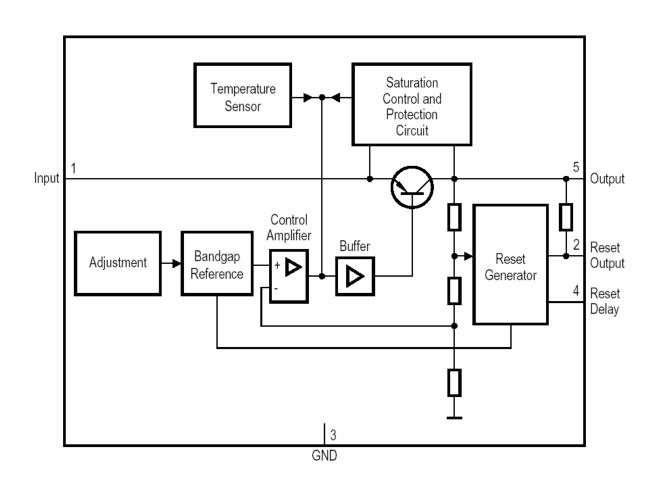
GND

P-TO263-5-1

Pin Definitions and Functions

Pin	Symbol	Function
1	I	Input; block to ground directly on the IC with ceramic capacitor
2	RO	Reset Output ; the open collector output is connected to the 5
		V output via an integrated resistor of 30 k Ω .
3	GND	Ground; internally connected to heatsink.
4	D	Reset Delay; connect a capacitor to ground for delay time
		adjustment.
5	Q	5-V Output ; block to ground with 22 μF capacitor, ESR < 3 Ω .

Circuit Description


The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of a series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If the output voltage decreases below 4.5 V, an external capacitor C_D on pin 4 (D) will be discharged by the reset generator. If the voltage on this capacitor drops below V_{DRL} , a reset signal is generated on pin 2 (RO), i.e. reset output is set low. If the output

voltage rises above 4.5 V, C_D will be charged with constant current. After the power-on-reset time the voltage on the capacitor reaches V_{DU} and the reset output will be set high again. The value of the power-on-reset time can be set within a wide range depending of the capacitance of C_D .

The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overvoltage
- Overtemperature
- Reverse polarity

Block Diagram

Absolute Maximum Ratings

 $T_{\rm j}$ = -40 to 150 °C

Doromotor	Symbol	Limit	Values	Unit	Notes				
Parameter	Symbol	min.	max.	Unit					
Input									
Voltage	$V_{ m I}$	- 42	42	V					
Voltage	$V_{ m I}$		65	V	<i>t</i> ≤ 400 ms				
Current	I_{I}				internally limited				
Reset Output									
Voltage	V_{R}	- 0.3	7	V					
Current	I_{R}				Internally limited				
Reset Delay				<u>, </u>	_				
Voltage	V_{D}	-0.3	7	V					
Current	I_{D}				Internally limited				
Output	Output								
Voltage	V_{Q}	- 1.0	16	V					
Current	I_{Q}				Internally limited				
Ground									
Current	I_{GND}	- 0.5	_	Α	_				
Temperatures									
Junction temperature	T_{j}		150	°C	_				
Storage temperature	$T_{ m stg}$	- 50	150	°C					

Optimum reliability and life time are guaranteed if the junction temperature does not exceed 125 °C in operating mode. Operation at up to the maximum junction temperature of 150 °C is possible in principle. Note, however, that operation at the maximum permitted ratings could affect the reliability of the device.

Operating Range

Parameter	Symbol	Limit \	Values	Unit	Notes			
Farameter	Syllibol	min.	max.	Offic	140162			
Input voltage	$V_{\rm I}$	6	42	V	_			
Junction temperature	T _j	- 40	150	°C	_			
Thermal Resistance								
Junction ambient	Rthja	_	65	K/W	TO263			
Junction case	Rthjc	_	3	K/W	<i>t</i> < 1 ms			
	Z_{thjc}		2	K/W	TO263			

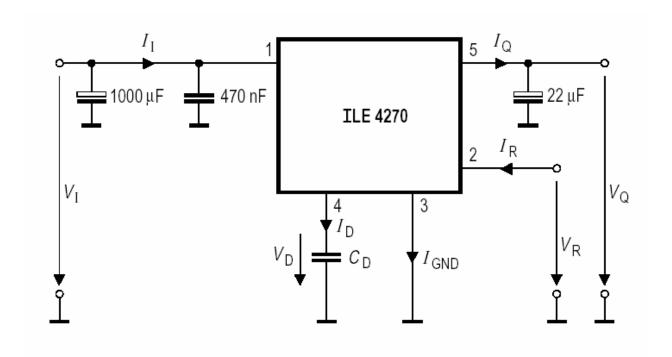
Characteristics

 $V_{\rm I}$ = 13.5 V; - 40 °C \leq $T_{\rm J}$ = \leq 125 °C (unless otherwise specified)

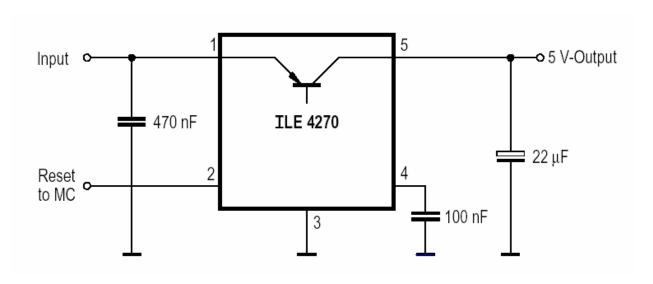
		Limit Values				
Parameter	Symbol	min	typ.	max.	Unit	Test Condition
Output voltage	V_{Q}	4.90	5.00	5.10	V	5 mA $\leq I_{Q} \leq$ 550 mA; 6 V $\leq V_{I} \leq$ 26 V
Output voltage	V_{Q}	4.90	5.00	5.10	V	26 V $\leq V_{\rm I} \leq$ 36 V; $I_{\rm Q} \leq$ 300 mA
Output current limiting	<i>I</i> Qmax	650	850	_	mA	<i>V</i> _Q = 0 ∨
Current consumption $I_{q} = I_{I} - I_{Q}$	I_{q}	_	1	1.5	mA	I_Q = 5 mA
Current consumption $I_{q} = I_{I} - I_{Q}$	I_{q}	_	55	75	mA	<i>I</i> _Q = 550 mA
Current consumption $I_q = I_1 - I_Q$	I_{q}	_	70	90	mA	$I_{\rm Q}$ = 550 mA; $V_{\rm I}$ = 5 V
Drop voltage	V_{dr}	_	350	700	mV	$I_{\rm Q}$ = 550 mA1)

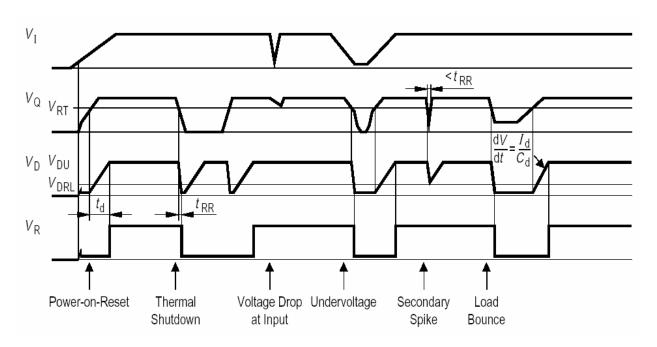
¹⁾ Drop voltage = $V_I - V_Q$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input)

Characteristics (cont'd)


 $V_{\rm I}$ = 13.5 V; - 40 °C \leq $T_{\rm J}$ = \leq 125 °C (unless otherwise specified)

	Limit Values					
Parameter	Symbol	min	typ.	max.	Unit	Test Condition
Load regulation	ΔV_{Q}	-	25	50	mV	I_{Q} = 5 to 550 mA; V_{I} = 6 V
Supply voltage regulation	$\Delta V_{ t Q}$	_	12	25	mV	$V_{\rm I}$ = 6 to 26 V $I_{\rm Q}$ = 5 mA
Power supply Ripple rejection	PSRR	_	54	_	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 $V_{\rm SS}$
Reset Generator						
Switching threshold	V_{RT}	4.5	4.65	4.8	V	_
Reset High voltage	V_{ROH}	4.5	_	_	V	_
Reset low voltage	V_{ROL}	_	60	-	mV	R_{intern} = 30 kΩ2); 1.0 V ≤ V_{Q} ≤ 4.5 V
Reset low voltage	V_{ROL}	_	200	400	mV	I_{R} = 3 mA, V_{Q} = 4.4 V
Reset pull-up	R	18	30	46	kΩ	internally connected to Q
Lower reset timing threshold	V_{DRL}	0.2	0.45	0.8	V	$V_{ m Q}\!< V_{ m RT}$
Charge current	I_{d}	8	14	25	μΑ	<i>V</i> _D = 1.0 ∨
Upper timing threshold	V_{DU}	1.4	1.8	2.3	V	-
Delay time	$t_{ m d}$	_	13	_	ms	<i>C</i> _D = 100 nF
Reset reaction time	<i>t</i> rr	_	_	3	μS	C _D = 100 nF
Overvoltage Protection						
Turn-Off voltage	$V_{ m I,\ ov}$	42	44	46	V	_


¹⁾ Drop voltage = $V_I - V_Q$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input)


²⁾ Reset peak is always lower than 1.0 V.

Test Circuit

Application Circuit

Time Response