IW4066B

QUAD BILATERAL SWITCH High-Voltage Silicon-Gate CMOS

The IW4066B is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. In addition, the on-state resistance is relatively constant over the full input-signal range.

The IW4066B consists of four independent bilateral switches. A single control signal is required per switch. Both the p and the n device in a given switch are biased on or off simultaneously by the control signal.(As show in Fig.1.)The well of the n-channel device on each switch is either tied to the input when the switch is on or to GND when the switch is off. This configuration eliminates the variation of the switch-transistor threshold voltage with input signal, and thus keeps the on-state resistance low over the full operating-signal range.

The advantages over single-channel switches include peak input-signal voltage swings equal to the full supply voltage, and more constant on-state impedance over the input-signal range.

ORDERING INFORMATION IW4066BN Plastic IW4066BD SOIC T_A = -55° to 125° C for all packages

Operating Voltage Range: 3.0 to 18 V

- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C

- Noise margin (over full package temperature range):
- 1.0 V min @ 5.0 V supply
- 2.0 V min @ 10.0 V supply
- 2.5 V min @ 15.0 V supply

PIN ASSIGNMENT

	_				
X _A	ď	1•	14	þ	V _{CC}
YA	þ	2	13	þ	A ON/OFF CONTROL
YB	þ	3	12	þ	D ON/OFF CONTROL
X _B	þ	4	11	þ	XD
B ON/OFF CONTROL	þ	5	10	þ	YD
C ON/OFF CONTROL	þ	6	9	þ	Yc
GND	þ	7	8	þ	X _C

FUNCTION TABLE					
On/Off	State of				
Control	Analog				
Input	Switch				
L	Off				
Н	On				

NTEGRAL

MAXIMUM RATINGS^{*}

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +20	V
V _{IN}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin	±10	mA
PD	Power Dissipation in Still Air, Plastic DIP+	750	mW
	SOIC Package+	500	
PD	Dissipation per Output Transistor	100	mW
Tstg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10	260	°C
	Seconds		
	(Plastic DIP or SOIC Package)		

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

+Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C

SOIC Package: : - 7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{cc}	DC Supply Voltage (Referenced to GND)	3.0	18	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

IW4066B

Sym			V _{CC}	Guara	anteed L	imit	
bol	Parameter	Test Conditions	V	≥-55°C	25	≤125	Unit
					°C	°C	
VIH	Minimum High-Level	R _{on} = Per Spec	5.0	3	.5(Min)		V
	Voltage ON/Off		10		7(ÌMin)		
	Control Inputs		15	1	1(Min)		
VIL	Minimum Low-Level	R _{ON} = Per Spec	5.0	1	1	1	V
	Voltage ON/Off		10	2	2	2	
	Control Inputs		15	2	2	2	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	18	±0.1	±0.1	±1.0	μA
	Leakage Current,						
	ON/OFF Control						
	Inputs			0.05			
ICC	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	5.0	0.25	0.25	1.5	μA
	Supply Current		10	0.5	0.5	15	
	(per Package)		10	I E	 	30 150	
D	Maximum "ON!"	$\lambda = \lambda $	20	C 000	0 1050	100	0
RON	Resistance	$V_{\rm C} = V_{\rm CC}$	5.0 10	000 210	1050	550	Ω
	Resistance		10	200	2400	320	
		to V _{CC} -GND	15	200	240	520	
		2					
		V_{IS} = GND to V_{CC}					
ΔR_{ON}	Maximum Difference	$V_{\rm C} = V_{\rm CC}$	5.0	-	15	-	Ω
	in "ON" Resistance	R _L =10 kΩ	10	-	10	-	
	Between Any Two		15	-	5	-	
	Channels in the						
	Same Package		1.0				
I _{OFF}	Maximum Off-	$V_{\rm C} = 0$ V	18	±0.1	±0.1	±1.0	μA
	Channel Leakage	$V_{IS} = 18 V; V_{OS} = 0 V$					
	Current, Any One	$V_{IS}=0$ V; $V_{OS}=18V$					
<u> </u>	Movimum	$\gamma = 0 \gamma$	10	10.1	10.1	110	
ION	Channel Lookere	$v_{\rm C} = 0 v$	ΙÕ	±0.1	±0.1	±1.0	μA
	Current Any One	$V_{1S} = 10 V, V_{0S} = 0 V$					
	Channel	VIS-0 V, VOS- 10V					
L		<u> </u>					

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

		200	naz, mput	ιη η 2 01	10)	
		V_{CC}	Gua	ranteed I	_imit	
Symbol	Parameter	V	≥-55	25°C	≤125	Unit
			°C		°C	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Analog	5.0	40	40	80	ns
	Input to Analog Output (Figure 2)	10	20	20	40	
		15	15	15	30	
t _{PLZ} , t _{PHZ} ,	Maximum Propagation Delay, ON/OFF	5.0	70	70	140	ns
t _{PZL} , t _{PZH}	Control to Analog Output (Figure 3)	10	40	40	80	
		15	30	30	60	
С	Maximum Capacitance	-				pF
	ON/OFF Control Input			15		
	Control Input = GND					
	Analog I/O			7.5		
	Feedthrough			0.6		

AC ELECTRICAL CHARACTERISTICS(CL=50pF, RL=200kΩ, Input tr=tf=20 ns)

ADDITIONAL APPLICATION CHARACTERISTICS(Voltages Referenced to GND Unless Noted)

Sym			V _{CC}	Limit	
bol	Parameter	Test Conditions	V	25°C	Unit
THD	Total Harmonic Distortion	$V_{\rm C}$ = $V_{\rm CC}$, GND = -5 V	5	0.4	%
		R_L = 10 k Ω , f_{IS} =1 kHz			
		sine wave			
BW	Maximum On-Channel	$V_{C} = V_{CC}$, GND = -5 V	5	40	MHz
	Bandwidth or Minimum	$R_L = 1 k\Omega$			
	Frequency Response				
BW	Maximum On-Channel	$V_{\rm C}$ = GND , $V_{\rm IS}$ = 5 V	10	1	MHz
	Bandwidth or Minimum	$R_L = 1 k\Omega$			
	Frequency Response				
BW	Maximum On-Channel	$V_{\rm C}$ (A) = $V_{\rm CC}$ = 5 V	5	8	MHz
	Bandwidth or Minimum	$V_{\rm C}$ (B) = GND = -5 V			
	Frequency Response	$V_{IS}(A)$ = 5 V_{P-P} ,50 Ω			
		source, $R_L = 1 k\Omega$			
-	Cross talk (Control Input to	V _C = 10 V	10	50	mV
	Signal Output)	t _r , t _f = 20 ns			
		$R_L = 10 k\Omega$			
-	Maximum Control Input	V_{IS} = V_{CC} , R_L = 1 k Ω	5	6	MHz
	Repetition Rate	C _L = 50 pF	10	9	
		V _C = 10 V (square wave	15	9.5	
		centered on 5 V)			
		$t_{r}, t_{f} = 20 \text{ ns},$			
		V _{os} = 1/2 V _{os} @1 kHz			

^{*}Guaranteed limits not tested. Determined by design and verified by qualification.

IW4066B

		Switch Input			Switch Output,		
		I _{IS} (mA)			V _{os}	(V)	
V _{CC} (V)	V _{IS} (V)	-55 °C	+25 °C	+125 °C	Min	Max	
5	0	0.64	0.51	0.36	-	0.4	
5	5	-0.64	-0.51	-0.36	4.6	-	
10	0	1.6	1.3	0.9	-	0.5	
10	10	-1.6	-1.3	-0.9	9.5	-	
15	0	4.2	3.4	2.4	-	1.5	
15	15	-4.2	-3.4	-2.4	13.5	-	

 $GND \leq V_{IS} \leq V_{CC}$

Figure 3. Switching Waveforms

EXPANDED LOGIC DIAGRAM (1/4 of the Device)

Control	Switch
GND = L	OFF
$V_{CC} = H$	ON

